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Abstract In this article, the performance of the Visible and 
Shortwave infrared Drought Index (VSDI), a drought index 
recently developed and validated in Oklahoma, United States, 
is further explored and validated in China. The in-situ mea-
sured soil moisture from 585 weather stations across China 
are used as ground-truth data, and five commonly used 
drought indices are compared with VSDI for surface drought 
monitoring. The results reveal that VSDI is robust and reliable 
in the estimation of surface dryness—it has the highest 
correlation with soil moisture among the six indices when 
computed using both the original and cloud removed data. All 
six indices show the highest correlation with soil moisture 
at the 10 cm layer and the averaged 10–50 cm layer. The 
spatiotemporal patterns of surface moisture indicated by 
the MODIS-based VSDI are further compared with the 
precipitation-based drought maps and the Global Land Data 
Assimilation System (GLDAS) simulated surface soil moisture 
maps over five provinces located in the Middle-Lower Yangtze 
Plain of China. The results indicate that despite the difference 
between the spatial and temporal resolutions of the three 
products, the VSDI maps still show good agreement with the 
other two drought products through the rapidly alternating 
drought and flood events in 2011 in this region. Therefore, 
VSDI can be used as an effective surface wetness indicator at 
both the provincial and the national scales in China.

Keywords China, drought map, drought monitoring, optical 
remote sensing, soil moisture, VSDI

1 Introduction

Drought is a slow developing phenomenon that accumulates 
over a period across a vast area, and its effects may last for 
years after it ends (Tannehill 1947). Droughts impact both 
surface and groundwater resources and can lead to reduced 
water supply, deteriorated water quality, crop failure, reduced 
range productivity, diminished power generation, and great 
economic and social damages (Riebsame, Changnon, and 
Karl 1991; Wilhite 2000; Mishra and Singh 2010). Bryant 

(1991) ranked natural hazards based on various key charac-
teristics including severity, duration, areal extent, loss of life, 
economic loss, social effect, long-term impact and so on, and 
found that drought ranks first among all natural hazards 
(Mishra and Singh 2010). Monitoring drought conditions and 
surface moisture status using satellite remote sensing is of 
great interest for drought disaster management and for the 
sustainable development of eco-environments.

In optical remote sensing, various studies have been con-
ducted to investigate the effectiveness of existing drought 
indices in surface moisture monitoring. The Normalized 
Difference Vegetation Index (NDVI) is commonly used in 
vegetation drought monitoring (Brown et al. 2008). Jimmy 
and Andrew (2002) analyzed the sensitivity of NDVI to soil 
moisture in the U.S. Corn Belt and found weak correlation 
between them. Specifically, NDVI was found to lag 8 weeks 
behind the soil moisture variation. The research of Chen, 
Huang, and Jackson (2005) revealed that NDVI and the 
Normalized Difference Water Index (NDWI) were both good 
candidates for vegetation moisture monitoring, and NDWI 
performed better than NDVI, which is consistent with the 
findings of Jackson et al. (2004). Gu et al. (2007) also com-
pared NDVI and NDWI using MODIS data for grassland 
drought assessment in the central United States. The results 
indicate strong relationships among NDVI, NDWI, and 
drought conditions, and NDWI had a quicker response to 
drought conditions than NDVI. However, the experiment 
conducted in Oklahoma, United States (Gu et al. 2008) 
indicated that NDVI and NDWI had comparable sensitivities 
to soil moisture variation and no additional benefit was gained 
by using NDWI. Yilmaz, Hunt, and Jackson (2008) analyzed 
the relationship between the Normalized Difference Infrared 
Index (NDII) (Hardinsky, Lemas, and Smart 1983) and 
Vegetation Water Content (VWC) through the Soil Moisture 
Experiment 2002 and 2005 (SMEX02 and SMEX05) in Iowa, 
United States, and concluded that NDII was related to canopy 
Equivalent Water Thickness (EWT) and indirectly related to 
VWC. Zhao et al. (2009) validated the shortwave infrared 
water stress index (SIWSI) developed by Fensholt and 
Sandholt (2003) in northwestern China and recommended 
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using MODIS band 6 as shortwave infrared band in SIWSI 
calculation. Wang and Qu (2009) comprehensively reviewed 
progress in soil moisture monitoring using optical, thermal, 
passive microwave, and active microwave remote sensing 
techniques. Zhang et al. (2010) also reviewed advances in 
research of vegetation water content retrieval using optical 
remote sensing, including various vegetation moisture 
indices and the radiative transfer model (RTM) methods.

Recently, a simple method for the estimation of surface 
dryness, the Visible and Shortwave infrared Drought Index 
(VSDI), has been developed (Zhang et al. 2013). The VSDI is 
based on the combination of optical spectral bands located in 
Blue, Red, and Shortwave infrared (SWIR) regions. It shows 
potential advantages for monitoring both soil and vegetation 
moisture and for drought monitoring throughout plant grow-
ing seasons, which distinguish it from other drought indices 
that were either designed for vegetation water content estima-
tion or confined to soil moisture monitoring. This index has 
been proven effective in monitoring the drought development 
over Oklahoma in the United States (Zhang et al. 2013), but 
its responses to moisture dynamics in other regions and dif-
ferent phenological conditions requires further examination. 

The main objective of this study is to further explore the 
performance of VSDI in China as a surface drought index 
at the regional and national scales. To achieve this goal, two 
experiments were carried out: one to compare VSDI with five 
commonly used drought indices over China’s 585 weather 
stations; and the other to compare VSDI drought maps with 
other drought products covering the Middle-Lower Yangtze 
Plain in China. Based on the above validation, VSDI can be 
deemed an efficient drought index applicable for drought 
monitoring in China at different scales. Our work on VSDI is 
to provide a new solution for future surface dryness monitor-
ing and VSDI is expected to be used as a generalized drought 
index in various areas and ecosystems.

2 Methods

Five typical drought indices were selected as the candidate 
drought indices to compare with VSDI, including the Land 
Surface Water Index (LSWI) (Xiao et al. 2004), the Moisture 
Stress Index (MSI) (Hunt and Rock 1989), the Surface Water 
Capacity Index (SWCI) (Du et al. 2007), the Shortwave 
Infrared Soil Moisture Index (SIMI) (Yao et al. 2011), and 
the Normalized Difference Vegetation Index (NDVI) 
(Deering 1978). These indices are commonly used for surface 
dryness monitoring and only require optical spectral bands 
for calculation.

2.1 Land Surface Water Index (LSWI)

The LSWI is a popular drought index for vegetation moisture 
monitoring by using the normalized difference between 
Near-infrared (NIR) and shortwave infrared (SWIR) bands. 
It was proposed by Xiao et al. (2004) based on the band 2 

(NIR, 841–876 nm) and band 6 (SWIR, 1628–1652 nm) of 
MODIS data:

 LSWI = (RNIR – RSWIR)/(RNIR + RSWIR) Eq. 1

This index has also been studied and referred to under 
other names, such as NDII (Hardinsky, Lemas, and Smart 
1983), NDWI (Gao 1996), and SIWSI (Fensholt and Sandholt 
2003), which varies with the specific wavelengths or sensor-
dependent bands used. Despite the different names, one thing 
these indices have in common is that the NIR spectral region 
serves as a moisture reference band and the SWIR spectral 
domain is used as the moisture measuring band. This index 
has been proven effective in monitoring vegetation water 
content in a variety of studies (Zarco-Tejada, Rueda, and 
Ustin 2003; Maki, Ishiahra, and Tamura 2004; Xiao et al. 
2005; Gu et al. 2008).

2.2 Moisture Stress Index (MSI) 

The MSI is a simple water ratio index for the estimation of 
leaf relative water content (%) and equivalent water thickness 
(EWT, g cm–2) of different plant species (Hunt and Rock 
1989). It is calculated as R1600 nm/R820 nm. In this study, 
the SWIR band (band 6 of MODIS data) is used instead 
of the MIR band in equation 2 considering that the strong 
water absorption bands at SWIR spectrum are more sensitive 
to moisture variation than other optical spectral regions 
(Dawson et al. 1999; Ceccato et al. 2001; Chuvieco et al. 
2002). In addition, the weak water absorption at NIR band 
makes it less sensitive to water variation (Gao 1996; Ghulam 
et al. 2008), thus the ratio between SWIR and NIR bands can 
effectively reduce the scattering effect of the single band and 
highlight the water variation in vegetation leaves.

 MSI = RSWIR6/RNIR  Eq. 2

2.3 Surface Water Capacity Index (SWCI)

The SWCI is a surface moisture index constructed by using 
the normalized difference between two SWIR bands (bands 6 
and 7) of MODIS data (Du et al. 2007):

 SWCI = (RSWIR6 – RSWIR7)/(RSWIR6 + RSWIR7) Eq. 3

Since MODIS band 6 (1628–1652 nm) and band 7 (2105–
2155 nm) correspond to the valley and the peak of the water 
absorption curve respectively and are both sensitive to 
moisture variation, the difference between the two bands 
(RSWIR6 – RSWIR7) has the potential of indicating the surface 
dryness conditions and reducing the atmospheric effect to 
some extent considering the similar response of the two bands 
to atmospheric influences. The term RSWIR6 + RSWIR7 is used to 
limit the index value within –1 and 1. The validation results 
indicate that SWCI has strong correlation with soil water 
content in Inner Mongolia and Liaoning Province of China 
(Du et al. 2007). Compared with NDVI, SWCI also presents 
higher correlation with the average soil moisture for the 
0–50 cm layer in Henan Province of China (Zhang et al. 
2008). 
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2.4 Shortwave Infrared Soil Moisture Index (SIMI)

The SIMI (Yao et al. 2011) is a soil moisture index developed 
based on the SWIR spectral space using MODIS band 6 
and band 7 data. It can also be applied to remote sensor 
with two shortwave infrared bands centered on 1650 nm and 
1950 nm.

 SIMI R RSWIR6 SWIR7= +( )2 2 2  Eq. 4

The combined use of MODIS band 6 and band 7 in the 
SWIR spectral space can highlight the moisture information 
and reduce the disturbance from the complex land surface 
components at the same time. This index has been proven 
more efficient than the Temperature-Vegetation index (TVX), 
which is the ratio between Land Surface Temperature 
(LST) and NDVI, in soil moisture retrieval in Ningxia Hui 
Autonomous Region of China (Yao et al. 2011).

2.5 Normalized Difference Vegetation Index (NDVI)

 NDVI = (RNIR – RRED)/(RNIR + RRED) Eq. 5

The NDVI is a well-known vegetation greenness index based 
on the normalized difference between NIR and Red reflec-
tance. It has been widely applied in drought monitoring under 
the assumption that water stress is the most important factor 
that interferes with the plant growing process (McVicar and 
Bierwirth 2001; Ji and Peters 2003; Wan, Wang, and Li 2004; 
Wang et al. 2007; Gu et al. 2007, 2008; Brown et al. 2008). 

2.6 Visible and Shortwave infrared Drought Index 
(VSDI)

The VSDI is a newly developed drought index for drought 
monitoring of both soil and vegetation surfaces. This index is 
a combination of MODIS Blue (band 3), Red (band 1), and 
SWIR (band 6) bands, and is defined in equation 6:

 VSDI = 1 – [(RSWIR6 – RBlue) + (RRed – RBlue)] Eq. 6

By analyzing the spectral response to water stress of plants 
and soils, SWIR and Red bands are found sensitive to mois-
ture variation for both types of surfaces, thus they are used as 
the moisture measuring bands. The Blue band is less sensitive 
to water changes and can serve as the moisture benchmark 
(Zhang et al. 2013). In this way, VSDI is constructed based 
on the difference between moisture sensitive bands (SWIR 
and Red) and reference band (Blue). The combination of 
(RSWIR – RBlue) and (RRed – RBlue) may maximize the moisture 
variation and give the potential to estimate surface water 
independent of land cover types. Finally, “(RSWIR – RBlue) + 
(RRed – RBlue)” is subtracted from 1 to make VSDI positively 
correlated to moisture variation. The theoretical VSDI range 
is defined in Table 1 with brief explanation. 

The validation of VSDI was carried out in Oklahoma, 
United States using the soil moisture measurements from 49 
Mesonet stations.i The results show that VSDI presented high 

correlation with soil moisture and was efficient for drought 
monitoring over different land cover types and was applicable 
throughout the plant growing seasons in Oklahoma (Zhang 
et al. 2013).

3 Test Site and Data Processing

Our study area is located in China (Figure 1) and the evalua-
tion of the performance of VSDI was conducted at two scales. 
First, the soil moisture measurements from 585 meteorologi-
cal and environmental observation stations across China 
(indicated by black dots in Figure 1) were used as ground-
truth data to compare VSDI with other drought indices. At 
these stations soil moisture is measured for every 10 days 
and recorded as relative soil moisture at three depths—10 cm, 
20 cm, and 50 cm. The mean 10–20 cm soil moisture (later 
referred to as 20_ave) and the mean 10–50 cm moisture (later 
referred to as 50_ave) were also calculated respectively 
by average soil moisture of the first two layers and all three 
layers. The data for the 585 stations used in this research are 
from March to October in 2011.

Second, VSDI is investigated at a smaller scale in the 
Middle-Lower Yangtze Plain in southeast China (the enlarged 
area in Figure 1). Five provinces are included in this region: 
Hubei, Hunan, Auhui, Jiangxi, and Zhejiang Provinces. 
In 2011, this region experienced frequent severe drought 
and flood events; thus it represents an interesting case for 
examining the performance of VSDI under extreme weather 
conditions. 

For the Yangtze River region, the monthly precipitation 
anomaly data were collected from 84 local weather stations 
(denoted by the plus signs in Figure 1). The station-based 
precipitation anomalies are interpolated using Kriging 
interpolation (Oliver 1990) embedded in ArcGIS software to 
produce a continuous precipitation map. With reference to 
the four precipitation anomaly-based drought categories 
(indicated by asterisks in Table 2) defined in the Chinese 
Classification of Meteorological Drought (GB/T 20481-2006) 
(China Meteorological Administration 2006), five more cate-
gories were introduced and finally nine drought categories 
were adopted to describe the moisture condition of this region 
(Table 2).

The remote sensing data used in this study are the 8-day 
MODIS reflectance products (MOD09A1). The spatial 
resolution of MOD09A1 is 500 m for bands 1–7 covering the 

Table 1. Definition of the theoretical range of the Visible and 
Shortwave Infrared Drought Index (VSDI)

0 < VSDI ≤ 1 The smaller the value is, the drier the condition it 
indicates (for the surface of farmland or any surface that 
can be simply classified as soil, vegetation and the 
combination of the two)

1 < VSDI ≤ 2 Water or Snow Water Equivalent (including water bodies, 
snow, and ice cover)

Source: Zhang et al. (2013).
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visible, near-infrared, and shortwave-infrared spectral 
domains. The MODIS data were obtained from two sources. 
In accordance with the station-based soil moisture measure-
ments, the MODIS reflectance data that geographically 
correspond to the 585 weather stations were downloaded 

from the Earth Observation and Modeling website of the 
University of Oklahoma (http://www.eomf.ou.edu/), which 
provides the retrieved time series MODIS data for multiple 
sites. Considering the different time intervals between 
MODIS data (8-day period) and the soil moisture measure-
ments (10-day period), the MODIS images that have the lon-
gest overlap with the 10-day ground-truth data were selected 
for correlation analysis. Considering that cloud contamina-
tion is a major problem in optical remote sensing application, 
the reflectance data before and after the quality control and 
exclusion of cloud contaminated pixels are both used in this 
study for computing and comparing the six drought indices 
and to evaluate the cloud influences on these indices in large 
scale.

For the investigation of the alternating drought and flood 
events in the Middle-Lower Yangtze region, the MODIS 
images covering the five provinces were downloaded from 
NASA’s LAADS Web (Level 1 and Atmosphere Archive and 
Distribution System, http://ladsweb.nascom.nasa.gov/data) 
and mosaicked. A quality control process was applied to filter 
the “cloud” pixels by using the MODIS quality assurance 
(QA) data product. 

Another set of data used in this study comes from a 
web-based application developed by Goddard Earth Sciences 
Data and Information Services Center (GES DISC), called 
Giovanni. It provides a simple and intuitive way to visualize, 
analyze, and access vast amounts of earth science remote 
sensing data without having to download the data (http://disc.
sci.gsfc.nasa.gov/giovanni/overview/). In this study, the 
monthly data set of average soil moisture at the 0–10 cm laye r 
simulated by the GLDAS-1 NOAH Model were selected from 
the Global Land Data Assimilation System (GLDAS) data 
portal in Giovanni. This data set covers the period from 
January 1979 to May 2012 and has a spatial resolution of 
1 degree. The modeled monthly soil moisture of the five prov-
inces was produced by Giovanni and used for the following 
analysis.

4 Results and Discussion

Using the above data sets, VSDI was validated by comparing 
with the other five drought indices and drought maps. The 
results are discussed in this section.

4.1 Comparison among Different Drought Indices

In this study, the ground-truth data (relative soil moisture) 
are assumed to have a normal distribution. The Correlation 
Coefficient (R), which is a measure of the strength of linear 
dependence between two variables, is calculated between 
the six drought indices (VSDI, LSWI, MSI, SWCI, SIMI, 
and NDVI) and the relative soil moisture respectively. The 
Correlation Coefficient R is computed at five depths (10 cm, 
20 cm, 50 cm, 20_ave, and 50_ave) over 585 stations across 
China, and two atmospheric conditions are also considered—
one represented by the original images and the other by 

Table 2. Drought categories based on precipitation anoma-
lies (Pa). The asterisks indicate the drought categories 
defined in the Chinese Classification of Meteorological 
Drought (GB/T 20481-2006) (China Meteorological Adminis-
tration 2006)

Moisture Condition Pa Range Moisture Condition Pa Range

Normal −40 < Pa ≤ 40 Abnormally wet 40 < Pa ≤ 60
Abnormally dry* −60 < Pa ≤ −40* Moderately wet 60 < Pa ≤ 80
Moderate drought* −80 < Pa ≤ −60* Severely wet 80 < Pa ≤ 95
Severe drought* −95 < Pa ≤ −80* Extremely wet 95 < Pa

Extreme drought* Pa ≤ −95*

Figure 1. Map of the study area in China. The black dots 
(upper panel) represent the 585 weather stations across 
China where the relative soil moisture data were obtained. 
The plus signs (lower panel) denote the 84 weather stations 
within the five provinces in the Middle-Lower Yangtze Plain 
where precipitation anomalies were recorded
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images with “cloudy” pixels removed. The results are listed 
in Table 3. Figure 2 shows the scatter plots and the linear 
fitting between the six drought indices and the 10 cm relative 
soil moisture. The cloud pixels have been eliminated from the 
analysis in Figure 2.

From Table 3 we can see that among the six indices, MSI 
and SIMI are negatively correlated to soil moisture variation, 
while other indices have positive correlation with surface 

dryness. The absolute value of correlation coefficients (|R|) 
between the six drought indices and soil moisture at all depths 
ranges from 0.13 to 0.41. It is worth explaining that although 
all R values have passed the significance test, they are not 
significantly high. The coefficient of determination values 
(R2) of the six indices, which describes the proportion of vari-
ance in a data set that is accounted for by the statistical model 
(Steel and Torrie 1960), are relatively low with the highest 

Table 3. The Correlation Coefficient (R) calculated between each of the six drought indices† and relative soil moisture at five 
depths from 585 weather stations across China. A maximum number of 17,550 samples (30 periods x 585 stations) are in-
cluded in the statistical analysis. Fisher (F) Test is conducted to test this linear regression and the Rs for all indices have 
passed the significance test (p_value<0.05). The original condition stands for the results without quality control (cloud pixels 
included in R computation) and the cloud removed condition denotes that the cloud pixels have been filtered before R calcu-
lation.

Condition Indices Relative Soil Moisture

10 cm 20 cm 50 cm 20_ave 50_ave

R F_value p_value R F_value p_value R F_value p_value R F_value p_value R F_value p_value

Original VSDI 0.39 2142.8 0.00 0.37 1863.8 0.00 0.37 1794.2 0.00 0.39 2121.1 0.00 0.41 2358.1 0.00 
LSWI 0.23 643.6 0.00 0.19 455.4 0.00 0.23 641.3 0.00 0.21 573.0 0.00 0.25 768.9 0.00 
MSI −0.23 651.8 0.00 −0.19 460.0 0.00 −0.24 685.1 0.00 −0.22 579.2 0.00 −0.26 826.9 0.00 
SWCI 0.27 923.2 0.00 0.23 690.1 0.00 0.26 840.9 0.00 0.26 851.1 0.00 0.29 1042.9 0.00 
SIMI −0.24 747.5 0.00 −0.23 691.9 0.00 −0.26 859.0 0.00 −0.24 755.5 0.00 −0.26 842.9 0.00 
NDVI 0.15 262.3 0.00 0.12 162.9 0.00 0.17 352.2 0.00 0.13 220.3 0.00 0.18 372.3 0.00 

Cloud 
removed

VSDI 0.35 1474.6 0.00 0.34 1345.1 0.00 0.35 1411.5 0.00 0.35 1489.3 0.00 0.38 1742.4 0.00 
LSWI 0.20 436.0 0.00 0.17 296.2 0.00 0.21 479.0 0.00 0.19 380.5 0.00 0.23 561.0 0.00 
MSI −0.20 443.2 0.00 −0.17 299.2 0.00 −0.22 512.6 0.00 −0.19 385.3 0.00 −0.24 606.7 0.00 
SWCI 0.26 783.9 0.00 0.23 576.3 0.00 0.25 699.1 0.00 0.25 717.7 0.00 0.28 869.9 0.00 
SIMI −0.35 1473.7 0.00 −0.33 1319.3 0.00 −0.36 1516.3 0.00 −0.35 1475.3 0.00 −0.38 1704.6 0.00 
NDVI 0.22 548.5 0.00 0.18 361.6 0.00 0.23 553.2 0.00 0.21 474.7 0.00 0.24 657.9 0.00 

Note: †The six drought indices are Visible and Shortwave Infrared Drought Index (VSDI), Land Surface Water Index (LSWI), Moisture Stress Index (MSI), Surface 
Water Capacity Index (SWCI), Shortwave Infrared Soil Moisture Index (SIMI), and Normalized Difference Vegetation Index (NDVI).

Figure 2. Scatter plots between each drought index (VSDI, LSWI, MSI, SWCI, SIMI, and NDVI) and the 10 cm relative soil 
moisture over 585 stations across China. The cloud contaminated pixels have been removed from this correlation analysis
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value of 0.17 found in VSDI. Several reasons may be ascribed 
to this phenomenon, such as the different spatial resolution 
between MODIS data (500 m) and the ground-truth data 
(station-based point measurements), the mismatch of the 
temporal resolution of the two data sets, and the positioning 
and image registration errors, which may all add great 
uncertainties to the final results and reduce the proportion of 
variance that may be explained by the indices themselves. 
However, given that all six drought indices are calculated and 
processed in the same way and may be affected by the same 
factors, and the five other indices are representative moisture 
indices and have been proved efficient in moisture estimation 
by a variety of studies, the correlation results can be consid-
ered reliable and the relative superior performance of VSDI 
(with higher R values) compared with other indices can 
justify the capability of VSDI for moisture monitoring. 

For both conditions (original and cloud removed), VSDI 
possesses the highest R values among the six indices, fol-
lowed by the soil moisture drought indices (SWCI and SIM), 
which are slightly higher than that of the vegetation drought 
indices (LSWI and MSI). It is also worth noting that, after 
removing the cloud contaminated pixels (Table 3 and 
Figure 2), both SIMI and NDVI show enhanced correlation 
with the observed relative soil moisture: the performance 
of SIMI is almost as good as VSDI and NDVI has higher R 
values than the vegetation drought indices (LSWI and MSI). 
In contrast, other indices show slightly subdued correlation 
with the observed relative soil moisture after excluding the 
cloud contamination. The results suggest that VSDI is an 
efficient and reliable drought index among the six indices 
and the atmospheric conditions may have a stronger effect on 
SIMI and NDVI compared with other indices. In this sense, 
the cloud pixels should be removed or cloud-free conditions 
should be selected when applying SIMI and NDVI for surface 
moisture monitoring with high accuracy. 

A further examination of Table 3 also reveals that for both 
conditions (original and cloud removed), all indices seem to 
have higher correlation with surface soil moisture (10 cm 
layer) than soil moisture at deeper layers (20 cm and 50 cm). 
This can be explained by the limited penetrability of optical 
remote sensing signals. With the attenuation of optical sig-
nals, less information can be gathered from the deeper layers, 
and therefore a decreased correlation with soil moisture at 
these layers can be expected. Besides, stronger correlations 
are also observed between averaged soil moisture and drought 
indices, especially for the 10–50 cm layer. This may be due 
to the averaging effect that reduces the measuring noises by 
averaging soil moisture from different layers. Therefore, 
for operational applications the optical drought indices are 
recommended to estimate the surface dryness or the average 
soil moisture content.

4.2 Comparison with Other Drought Maps

In this study, the VSDI color maps for five provinces (Hubei, 
Hunan, Auhui, Jiangxi, and Zhejiang) in the Middle-Lower 
Yangtze Plain (Figure 1) were also produced and compared 

with two other drought products: the monthly drought clas-
sification maps based on precipitation anomalies; and the 
monthly average soil moisture in the 0–10 cm layer simulated 
by the GLDAS-1 NOAH Model from Giovanni (http://disc.
sci.gsfc.nasa.gov/giovanni/overview/index.html). The acqui-
sition and processing of the two drought products were 
introduced in Section 3. Finally, the three drought products 
are plotted and compared in Figure 3. The first column shows 
the precipitation-based drought maps with 9 moisture catego-
ries (as listed in Table 2). The middle column shows the 
GLDAS simulated monthly surface soil moisture. The last 
column shows the VSDI color maps calculated from the 
8-day MODIS reflectance products. Considering the differ-
ence in temporal resolution between the first two products 
(monthly) and VSDI color maps (8-day), the cloud-free VSDI 
images covering the middle or the last period of each month 
are selected for comparison.

From Figure 3, both agreement and some differences can 
be observed among the three products. In April, all drought 
maps indicate serious water-stressed conditions with warm 
and red color in the northern and southern parts of the study 
area, especially in Anhui and Jiangxi Provinces. This is 
consistent with the drought events that started early in 2011 
and were still persistent at this time in this area. In May, the 
drought condition seems relieved to some extent in the south 
of the study area (Hunan and Jiangxi Provinces) with light 
and blue color presented in all three products. However, for 
the northern part, both the soil moisture product and the VSDI 
product indicate sustained water stress, while the precipita-
tion-based drought map shows a normal to abnormally dry 
condition. In June, the first two products show an apparent 
moderate to severe wet condition (blue color) in the middle of 
the study area along the Yangtze River. This is consistent with 
the flood events that struck this area from early June. Since 
the cloud pixels have been filtered from the VSDI maps, the 
middle part of the VSDI color map on June 10 is almost blank, 
which means that heavy cloud was persistent in this area. This 
can be viewed as an indirect indication of the flood events 
considering that heavy rains usually coincide with heavy 
clouds. In July, drought conditions can be observed from all 
three products in the western and northern parts of the study 
area, but relatively wet conditions can be observed in the last 
two products in the eastern and southern parts. In August, a 
wet condition can be observed in the northeastern part of 
the study area in the first two products and corresponds to 
the blank area in the VSDI map after removing the cloud 
contamination. In August the drought condition in the VSDI 
map is more prominent in the southwestern part than in the 
other two products.

In summary, there are satisfactory agreements among the 
three products, especially between the GLDAS modeled 
surface soil moisture and the VSDI maps. This is reasonable 
because for these two products drought is measured by sur-
face soil moisture, but for the precipitation maps drought is 
measured by precipitation anomalies. The different temporal 
resolution (monthly vs. 8-day) may also have contributed to 
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Figure 3. Comparison between different drought maps of the five provinces located in the Middle-Lower Yangtze Plain from 
April to August, 2011. The first column shows the drought maps produced by interpolating the monthly precipitation anoma-
lies from the 84 weather stations. The middle column shows the GLDAS modeled monthly surface soil moisture (10 cm) from 
a web-based visualization application, Giovanni (http://disc.sci.gsfc.nasa.gov/giovanni/overview/index.html). The last colum n 
shows the VSDI color maps calculated from the 8-day MODIS reflectance products
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the differences among the three products. In general, VSDI 
can be viewed as an effective tool for monitoring surface 
moisture conditions. Compared with the precipitation-based 
drought maps interpolated from the 84 weather stations and 
the 1-degree GLDAS simulated soil moisture maps, the VSDI 
maps have a spatial resolution of 500 m, which may facilitate 
a finer-scale interpretation of surface moisture distribution. 
Although not elaborated in this study, the relatively high 
temporal resolution of VSDI maps (8-day) may also enable a 
closer and timely monitoring of drought development.

5 Conclusion

In this article, VSDI, a drought index recently developed, is 
further explored and validated in China. We come to the 
following conclusions:

The six optical drought indices applied in this study all 
have the ability of monitoring surface dryness and higher 
correlation is observed both with the top 10 cm layer and the 
10–50 cm averaged soil moisture than with the single deeper 
layer (that is, 20 cm and 50 cm) and the 10–20 cm averaged 
moisture. Therefore, it is suggested that the optical drought 
indices can be used to better monitor the surface soil moisture 
(10 cm) or multilayer averaged soil moisture than in other 
cases.

Among the six drought indices, VSDI shows the highest 
correlation with soil moisture at various depths using both the 
original and cloud removed data. SIMI has similar perfor-
mance as VSDI after removing the cloud pixels, and both 
SIMI and NDVI show enhanced correlation, while the 
correlations of other indices are slightly decreased after 
removing the cloud contamination. This suggests that VSDI 
is robust and reliable in the estimation of surface dryness 
among the six indices. SIMI and NDVI are more sensitive to 
atmospheric influences compared with other indices, there-
fore either images under clear weather conditions should 
be selected or atmospheric correction should be conducted 
before applying these two indices for drought monitoring.

Although differences exist among the three drought prod-
ucts for the Yangtze River region due to the different spatial 
and temporal resolutions, VSDI maps show a satisfactory 
agreement with the other two moisture products, even in the 
case of alternating drought and flood events in the study area. 
The MODIS-based VSDI maps have higher temporal and 
spatial resolutions than the other two products, and therefore 
may serve as an effective tool in real-time regional surface 
drought monitoring at field scale.
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Note

i The Mesonet stations are an extensive environmental observation 
network located in Oklahoma, United States, which can provide 
quality-controlled measurements of meteorological and land surface 
parameters such as precipitation, temperature, and soil moisture 
every five minutes. More detailed information can be found at http://
www.mesonet.org/.
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